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Instructional Objectives: 
 
At the end of this lesson, the students should be able to understand: 
 
• Nature of varying load on springs 
• Modification of Soderberg diagram 
• Estimation of material properties for helical spring 
• Types of helical springs 
• Design considerations for buckling and surge. 
 
 
7.2.1 Design of helical spring for variable load 
 
In the earlier lecture, we have learned about design of helical springs for static loads. 
In many applications, as for example in railway carriages or in automobile 
suspension systems the helical springs used are constantly under variable load. 
Hence, it is understood that whenever there is a variable load on a spring the design 
procedure should include the effect of stress variation in the spring wire. The 
methodology used is the modified Soderberg method. we have learnt about 
Soderberg method in earlier chapter, here, the necessary modifications applicable to 
helical spring design will be discussed.  
 
In the case of a spring, whether it is a compression spring or an extension spring, 
reverse loading is not possible. For example, let us consider a compression spring 
placed between two plates. The spring under varying load can be compressed to 
some maximum value and at the most can return to zero compression state (in 
practice, some amount of initial compression is always present), otherwise, spring 
will loose contact with the plates and will get displace from its seat. Similar reason 
holds good for an extension spring, it will experience certain amount of extension 
and again return to at the most to zero extension state, but it will never go to 
compression zone. Due to varying load, the stress pattern which occurs in a spring 
with respect to time is shown in Fig.7.2.1. The load which causes such stress pattern 
is called repeated load. The spring materials, instead of testing under reversed 
bending, are tested under repeated torsion.   
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Version 2 ME , IIT Kharagpur 



From Fig.7.2.1 we see that , 
 
 

                                                                                                                      (7.2.1) 
max

m a 2
τ

τ = τ =
 
 
 
Where, τa  is known as the stress  amplitude and τm is known as the mean stress or 
the average stress. We know that for varying stress, the material can withstand 
stress not exceeding endurance limit value. Hence, for repeated torsion experiment, 
the mean stress and the stress amplitude become,   
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7.2.1.1 Soderberg  failure criterion 
 
The modified Soderberg diagram for repeated stress is shown in the Fig 7.2.2. 
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Fig 7.2.2 

The stress being repeated in nature, the co-ordinate of the point a is ,
2 2
e eτ τ . For safe 

design, the design data for the mean and average stresses, τa and τm respectively, 
should be below the line a-b.  If we choose a value of factor of safety (FS), the line a-
b shifts to a newer position as shown in the figure. This line e-f in the figure is called 
a safe stress line and the point A ( ,m aτ τ ) is a typical safe design point.  
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Considering two similar triangles, abc and Aed respectively, a relationship between 
the stresses may be developed and is given as,  
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where τY is the shear yield point of the spring material.  
 
In simplified form, the equation for Soderberg failure criterion for springs is 
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(7.2.4) 
 
 
The above equation is further modified by considering the shear correction factor, Ks 
and Wahl correction factor, Kw. It is a normal practice to multiply τm by Ks and  to 
multiply τa by Kw. 
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The above equation for Soderberg failure criterion for will be utilized for the 
designing of springs subjected to variable load. 
 
7.2.1.2 Estimation of material strength 
 
It is a very important aspect in any design to obtain correct material property. The 
best way is to perform an experiment with the specimen of desired material. Tensile 
test experiments as we know is relatively simple and less time consuming. This 
experiment is used to obtain yield strength and ultimate strength of any given 
material. However, tests to determine endurance limit is extremely time consuming. 
Hence, the ways to obtain material properties is to consult design data book or to 
use available relationships, developed through experiments, between various 
material properties. For the design of springs, we will discuss briefly, the steps 
normally used to obtain the material properties.  
One of the relationships to find out ultimate strength of a spring wire of diameter d is, 
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For some selected materials, which are commonly used in spring design, the values 
of As and ms are given in the table below. 

                              
s sA m
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Hard-drawn wire                    1510   0.201   
Oil-tempered wire                  1610  0.193 
Chrome-vanadium wire         1790  0.155 
Chrome-silicon wire               1960  0.091 
Music wire                              2060  0.163 
 
The above formula gives the value of ultimate stress in MPa for wire diameter in mm. 
Once the value of ultimate strength is estimated, the shear yield strength and shear 
endurance limit can be obtained from the following table developed through 
experiments for repeated load. 
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Hard-drawn wire         0.21  0.42 
Oil-tempered wire                0.22  0.45 
Chrome-vanadium wire 0.20  0.51  
Chrome-silicon wire   0.20  0.51 
Music wire    0.23  0.40 
302 SS wire   0.20     0.46 
 
Hence, as a rough guideline and on a conservative side, values for shear yield point 
and shear endurance limit for major types of spring wires can be obtained from 
ultimate strength as, 
 

                                                                         and                                      (7.2.7) 
 
 
With the knowledge of material properties and load requirements, one can easily 
utilize Soderberg equation to obtain spring design parameters. 
 
 
 
7.2.2 Types of springs 
 
There are mainly two types of helical springs, compression springs and extension 
springs. Here we will have a brief look at the types of springs and their 
nomenclature. 
 
 
 
 
 
7.2.2.1 Compression springs 
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Following are the types of compression springs used in the design. 
 

Plain end spring 

(a) Plain ends 
 

Total coils,   NT        : N 
 

Solid length, LS      : d (  NT + 1 ) 
 

Free length,  L       : LS max allowan
 

Pitch, p                 : ( L – d ) / N 
 
                                                                                                                        
 
In the above nomenclature for the spring, N is the number of active coils, i.e., only 
these coils take part in the spring action. However, few other coils may be present 
due to manufacturing consideration, thus total number of coils, NT may vary from 
total number of active coils.  
 
Solid length, LS is that length of the spring, when pressed, all the spring coils will 
clash with each other and will appear as a solid cylindrical body. 
The spring length under no load condition is the free length of a spring. Naturally, the 
length that we visualise in the above diagram is the free length. 
  
Maximum amount of compression the spring can have is denoted as δmax, which is 
calculated from the design requirement. The addition of solid length and the  δmax  
should be sufficient to get the free length of a spring. However, designers consider 
an additional length given as   δ allowance. This allowance is provided to avoid clash 
between to consecutive spring coils. As a guideline, the value of δ allowance is 
generally 15% of δmax. 
 
The concept of pitch in a spring is the same as that in a screw.  
 
 
(b) Plain and Ground ends  
   
     Total coils,  NT         : N +  1 
 
      Solid length, LS       : d ( NT ) 
 

Free length, L       :  mδ

ce+ δ + δ

ax allowanceL + + δ

Fig 7.2.3 

Plain and Ground end  
spring 

S
      
      Pitch, p                  : L / ( N + 1) 
 
 
                                                                                                      

                                                                            
Fig 7.2.4 

The top and bottom of the spring is grounded as seen in the figure. Here, due to 
grounding, one total coil is inactive.  
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Squared or closed end 
spring 

(c) Squared or closed ends 
 
     Total coils,   NT      : N + 2 
 
     Solid length, LS     : d ( NT  + 1 ) 
 
     Free length, L       : S max allowanceL + δ + δ
 
     Pitch, p                  : ( L - 3d ) / N 
 
 
                                                                                                                        g 7.2.5 Fi
 
In the Fig 7.2.5 it is observed that both the top as well as the bottom spring is being 
pressed to make it parallel to the ground instead of having a helix angle. Here, it is 
seen that two full coils are inactive.  
 
 
 
 
 
 
(d) Squared and ground ends 
 
      Total coils,   NT             : N + 2 
 
      Solid length, LS      : d ( NT ) 
 
      Free length, L       : 
 
      Pitch, p                  : ( L - 2d ) / N 
 
 
 
                                                                                                                     

Squared and ground end
spring 

Fig 7.2.6 

S max allowanceL + δ + δ

It is observed that both the top as well as the bottom spring, as earlier one, is being 
pressed to make it parallel to the ground, further the faces are grounded to allow for 
proper seat. Here also two full coils are inactive.  
 
 
 
 
 
 
 
7.2.2.2 Extension springs 
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Part of an extension spring with a hook is 
shown in 
Fig.7.2.7. The nomenclature for the extension 
spring is given below. 
 
Body length,  LB   :   d ( N + 1 ) B

Free length,   L      :  LB + 2 hook diameter. B

 
here, N stands for the number of active coils. By 
putting the hook certain amount of stress 
concentration comes in the bent zone of the 
hook and these are substantially weaker zones 
than the other part of the spring. One should 
take up steps so that stress concentration in this 
region is reduced. For the reduction of stress 
concentration at the hook some of the 
modifications of spring are shown in Fig 7.2.8.                                                                                    

hook

D/2

Extension spring

Fig 7.2.7 

 
 
 
 A complete loop is turned up 

to a gradual sweeping curve 

A gradual reduction 
of end turns from D/2 
 

 
 
 
 
 
 
 
 
 
 
 

D/2 

Extension springs with improved ends 

 
 
  

Fig 7.2.8   
 
 
 
7.2.3 Buckling of compression spring 
 
Buckling is an instability that is normally shown up when a long bar or a column is 
applied with compressive type of load. Similar situation arise if a spring is too slender 
and long then it sways sideways and the failure is known as buckling failure. 
Buckling takes place for a compressive type of springs. Hence, the steps to be 
followed in design to avoid buckling is given below. 
 
Free length (L) should be less than 4 times the coil diameter (D) to avoid buckling for 
most situations. For slender springs central guide rod is necessary. 
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A guideline for free length (L) of a spring to avoid buckling is as follows, 
 
 
 

                                        (7.2.8) 
                                 
 
                                   ,          Where, Ce is the end condition and its values are given 
below. 

e

e

D 2(E G)L
C 2

<
G E

.57 or teel
C

π −
+

DL 2 , f s<

 
 
Ce         end condition 
 
2.0       fixed and free end 
1.0       hinged at both ends 
0.707   hinged and fixed end 
0.5       fixed at both ends   
 
 
If the spring is placed between two rigid plates, then end condition may be taken as 
0.5.  If after calculation it is found that the spring is likely to buckle then one has to 
use a guide rod passing through the center of the spring axis along which the 
compression action of the spring takes place.    
 
 
 
7.2.4  Spring surge (critical frequency) 
 
If a load F act on a spring there is a downward movement of the spring and due to 
this movement a wave travels along the spring in downward direction and a to and 
fro motion continues. This phenomenon can also be observed in closed water body 
where a disturbance moves toward the wall and then again returns back to the 
starting of the disturbance. This particular situation is called surge of spring. If the 
frequency of surging becomes equal to the natural frequency of the spring the 
resonant frequency will occur which may cause failure of the spring. Hence, one has 
to calculate natural frequency, known as the fundamental frequency of the spring 
and use a judgment to specify the operational frequency of the spring.  
 
 
 
The fundamental frequency can be obtained from the relationship given below. 
 
 
 
 
 
 
 
Fundamental frequency: 

s

s

2 W

1 Kgf
4 W

=

=

1 Kgf
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                           Both ends within flat plates                    (7.2.9) 
 
 
                                                                                
                                                       One end free and other end on flat plate. 
(7.2.10) 
                                                 
 
    
Where,   K  : Spring rate 
 
               WS   : Spring  
 
weight =                                                                                  (7.2.11) 2.47 2d DNγ
 
                           and d is the wire diameter, D is the coil diameter, N is the number 

of active  coils  and  γ is the specific weight of spring material. 
 
The operational frequency of the spring should be at least 15-20 times less than its 
fundamental frequency. This will ensure that the spring surge will not occur and even 
other higher modes of frequency can also be taken care of. 
 
A problem on spring design 
 300 N 

900 N 15 mm 

48 - 50 mm 

A helical spring is acted upon by a varying 
load of 300 N to 900 N respectively as shown 
in the figure. The spring deflection will be 
around 15 mm and outside diameter of the 
spring should be within 48-50 mm.  
 
 
 
 
Solution 
 
To design the spring for the given data, the most important parameter is the spring 
index. The spring index decides the dimension of the spring with respect to chosen 
wire diameter. Normally the spring index varies over a wide range from 3-12. For 
higher value of the spring index the curvature effect will be less, but relatively size of 
the spring and stress in the spring wire will increase. However, the effects will be 
some what opposite if the value of spring index is lower. Hence, it is better to start 
the iteration process with the spring index of 6-7.  
 
Let us start the problem with spring index, C=6 and wire diameter, d=7 mm. 
 
The above choice gives us a coil mean diameter, D =42 mm. Thereby, the outside 
diameter of the coil is 49 mm, which is within the given limit. 
Computation of stresses: 
 

m
300 900 600N

2
+

= =The mean load, F
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stress amplitude,  a

900 300F = = 300N
2
−

 
 
Shear stress concentration factor,   sk = +

11 1.083
12

=
 
 
Wahl correction factor,  w

4x6 1 0.615 1.253
4x6 4 6

−
= + =

−
k

 
 
 
So the value of mean shear stress,   
 
 
and the value of stress amplitude,  
 
 
Estimation of material properties: 
 
As no specific use of the spring is mentioned in the problem, let us take Chrome 
Vanadium as the spring material. This alloy spring steel is used for high stress 
conditions and at high temperatures, it is also good for fatigue resistance and long 
endurance for shock and impact loads.  
 
 
Ultimate strength of the material,                                                        
 
From the relationship of σ ult to τy (yield point) and endurance limit, eτ  we find that  
 
for chrome vanadium,   
 
and 
 
From Soderberg equation, 
 
 
 
 
 
 
 
 
 
 
 
Factor of safety, FS=1.0 implies that the design do not consider any unforeseen 
effect that may cause extra stresses in the spring.  Normally in design of springs it is 
better to consider a factor of safety which should be in the vicinity of 1.3-1.5. 
 

3

8 600 421.083 202.62MPa
(7 )π

× ×
=

×
= ×mτ

3

8 300 421.253 117.21MPa
(7 )π

× ×
=

×
= ×aτ

ut 0.155

1790σ = =1324 MPa
(7)

0.51 675.2y ult MPaτ σ= × =

0.2 264.8e ult MPaτ σ= × =

2

2

21 ( 1

e

y e

a

ymFS

ym a

y y eFS

τ

τ τ

τ
ττ

ττ τ
τ τ τ

=
−−

= + − )

1 202.62 117.21 2 675.2 1 1.0
FS 675.2 675.2 264.8
FS 1.00

×⎛ ⎞= + − =⎜ ⎟
⎝ ⎠

1

∴ ≈
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In order to increase the value of FS, in the next iteration, natural choice for the spring 
index, C is 5 and d = 8 mm. Because C=7 and d = 6 mm will lead to more stress on 
the wire and the value of FS will not improve.  
 
With C=5 and d=8 mm and following the similar procedure as in previous iteration we 
have, 
 

s wk 1.1, k 1.311= = 
Therefore, 
 

m 3

1.1 8 600 40 131.3MPa
8

τ
π

× × ×
= =

×
 
 
 
 
                                                                                                              
                                                                                                              

aτ = =3

1.311 8 300 40 78.24MPa× × ×
8π ×

Material properties: 
 

ut 0.155

y

e

1790σ
(8)

1297 MPa
τ 661.4 MPa

τ 259.4 MPa

=

=
=

=

 
 
 
 
Finally,  
 
 1 131.3 78.24 2 661.4 1 0.68

FS 661.4 661.4 259.4
×⎛ ⎞ 4∴ = + − =⎜ ⎟

⎝ ⎠ 
 

FS 1.46= 
The factor of safety obtained is acceptable. Therefore the value of spring index is 5 
and corresponding wire diameter is 8mm.  
 
Hence, mean spring diameter, D=40 mm. 
Outer diameter of spring, Do=40+8=48 mm, This value is within the prescribed limit. 
Inner diameter of spring, . iD 32mm=
 

3900 300 40N / mm 40 10 N / m
15
−

= = = ×Spring rate, k
 
Once the value of stiffness is known, then the value of number of active turns, N of 
the spring is,  
 4 3

3 3

Gd 80 10 8k N
8D N 8 ( 40 ) k

× ×
= ∴ =

× ×

4

16= 
 
 3

3 4

8 900 ( 40 ) 16max 22.5mm
80 10 8

δ × × ×
∴ = =

× ×
 
 
 
In the above equation, G = 80000 MPa.  
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Spring Nomenclature: 
 
Let us select the type of spring as squared and ground ends. For this type of spring 
the value of free length is, 
 

maxS allowanceL L δ δ= + + 
 

, 8.0 (16 2) 144S Twhere L dN mm= = × + =  
 

max15%allowanceδ δ= 
 
 
 maxL 18 8 22.5 15% 170mm

L 2d 170 16Pitch, p 9.625mm
N 16

δ= × + + ≈

− −
= = =

 
 
 
 
Check for buckling: 
 
We know that for steel,  
 

2.57 206
e

DL mm
C

< = 
 
 
Here, for the given spring seat configuration, Ce = 0.5 
  
The free length of the spring, 170 mm is less than the critical length for buckling, 
206mm. Therefore the design is safe.  
 
 
 
 
Check for critical frequency: 
 
In order to find the critical frequency of the spring, the weight of the spring is to be 
first computed,  

 
 
 

3 2 3
SW 2.47 (8X10 ) (40X10 ) 16 7800 9.81
7.74N

− −= × × × × ×
=

22.47sW d DNγ=

( )( )
2

4s
dW DNπ π γ=

 
 
 
 
 
 
 
 
Therefore,  
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The fundamental frequency of the spring (for both ends within flat plates),                                        
 
                                                                                                                                                             31 1 40 10 9.81X 112.6

2 2 7.74s

Kg Xf Hz
W

= = ≈ 
 
 
 
Safe frequency for design should be at least 20 times less than the fundamental 
frequency to take care of more number of harmonics. Therefore, the spring 
frequency for should be around 6 Hz. 
 
Questions and Answers 
 
Q1.  Do the helical spring experience reverse loading? What is the loading type 

called when  varying load acts on a helical spring? 
 
A1.  The helical spring experiences only repeated load. It cannot experience reverse 

loading, because the spring will lose contact with the end supports. 
 
Q2. What modification in Soderberg  diagram is required when it is used for design 

of helical springs? 
 
A2.  In the earlier Soderberg diagram, we have used in the design for varying loads 

on the machine member, had only stress amplitude in the endurance limit 
representation, since, endurance limit value was for complete reversed loading. 
Here, in spring design, we use endurance limit value for repeated loads only. 
Hence, we have both stress amplitude and mean stress value of equal 

magnitude,  
2
eτ .  Therefore, the endurance limit representation in  Soderberg 

diagram changes to ,
2 2
e eτ τ . 

 
 
Q3. What should be the safe frequency of a helical spring? 
 
A3.  Safe frequency for design should be at least 20 times less than the fundamental 

frequency of the spring to take care of more number of harmonics.  
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